Seminar第2419讲 圈的平面图兰数:一个反例

创建时间:  2023年07月05日 16:18  谭福平   浏览次数:   

报告题目 (Title):圈的平面图兰数:一个反例 (Planar Tur\'{a}n number of cycles: a counterexample.)

报告人 (Speaker): 刘肖男 博士(佐治亚理工学院)

报告时间 (Time):2023年7月7日(周五) 10:00

报告地点 (Place):校本部F309

邀请人(Inviter):康丽英


报告摘要: The planar Tur\'{a}n number $\textrm{ex}_{\mathcal{P}}(C_{\ell},n)$ is the largest number of edges in an $n$-vertex planar graph with no $\ell$-cycle. For $\ell\in \{3,4,5,6\}$, upper bounds on $\textrm{ex}_{\mathcal{P}}(C_{\ell},n)$ are known that hold with equality infinitely often. Ghosh, Gy\H{o}ri, Martin, Paulos, and Xiao conjectured an upper bound on $\textrm{ex}_{\mathcal{P}}(C_{\ell},n)$ for every $\ell\ge 7$ and $n$ sufficiently large. We disprove this conjecture for every $\ell\ge 11$. We also propose two revised versions of the conjecture. Joint work with Dan Cranston, Bernard Lidick\'{y}, and Abhinav Shantanam.

上一条:Seminar第2420讲 阿贝尔范畴上的挠对的稳定方法

下一条:Seminar第2418讲 平面图的最大spread

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us