Seminar第2418讲 平面图的最大spread

创建时间:  2023年07月05日 16:05  谭福平   浏览次数:   

报告题目 (Title):平面图的最大spread (On the maximum spread of planar graphs)

报告人 (Speaker): 王智宇 博士(佐治亚理工学院)

报告时间 (Time):2023年7月7日(周五) 9:00

报告地点 (Place):校本部F309

邀请人(Inviter):康丽英


报告摘要:The spread of a graph $G$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $G$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $n$, the $n$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $\lceil(2n-1)/3\rceil$ vertices and $\lfloor(n-2)/3\rfloor$ isolated vertices. For planar graphs, we show that the extremal $n$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $\lceil(2n-2)/3\rceil$ vertices and $\lfloor(n-4)/3\rfloor$ isolated vertices.

上一条:Seminar第2419讲 圈的平面图兰数:一个反例

下一条:Seminar第2417讲 单有向符号图上的流

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us