Seminar第2304讲 相对论欧拉方程组的奇性形成

创建时间:  2022年10月08日 13:49  谭福平   浏览次数:   

报告题目 (Title):Formation of singularities for the relativistic Euler equations(相对论欧拉方程组的奇性形成)

报告人 (Speaker):朱圣国 教授(上海交通大学)

报告时间 (Time):2022年10月11日(周二)10:00-11:00

报告地点 (Place):线上腾讯会议,会议 ID:828-891-243

邀请人(Inviter):赖耕


报告摘要:We consider large data problems for C1 solutions of the relativistic Euler equations. In the (1 + 1)-dimensional spacetime setting, if the initial data are strictly away from the vacuum, a key difficulty in considering the singularity formation is coming up with a way to obtain sharp enough control on the lower bound of the mass-energy density. For this reason, via an elaborate argument on a certain ODE inequality and introducing some key artificial (new) quantities, we provide one time-dependent lower bound of the mass-energy density of the (1+1)-dimensional relativistic Euler equations, which involves looking at the difference of the two Riemann invariants, along with certain weighted gradients of them. Ultimately, for C1 solutions with uniformly positive initial mass-energy density of the corresponding Cauchy problem, we give a necessary and sufficient condition for the singularity formation in finite time. This talk is mainly based on joint works with Nikolaos Athanasiou (ICL).

上一条:Seminar第2306讲 时间分数阶初值问题的直接间断Galerkin方法

下一条:Seminar第2299讲 时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us