Seminar第2299讲 时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性

创建时间:  2022年09月26日 19:44  谭福平   浏览次数:   

报告题目 (Title):Energy stability of variable-step L1-type schemes for time-fractional Cahn-Hilliard model (时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性)

报告人 (Speaker):廖洪林 教授(南京航空航天大学)

报告时间 (Time):2022年9月29日(周四) 14:00-15:30

报告地点 (Place):线上腾讯会议 会议 ID:453 779 895

邀请人(Inviter):蔡敏


报告摘要:The positive definiteness of discrete time-fractional derivatives is fundamental to the numerical stability for time-fractional phase-field models. A novel technique is proposed to estimate the minimum eigenvalue of discrete convolution kernels generated by the nonuniform L1, half-grid based L1 and time-averaged L1 formulas of the fractional Caputo's derivative. The main discrete tools are the discrete orthogonal convolution kernels and discrete complementary convolution kernels. Certain variational energy dissipation laws at discrete levels of the variable-step L1-type methods are then established for time-fractional Cahn-Hilliard model. They are shown to be asymptotically compatible, in the fractional order limit $\alpha\rightarrow1$, with the associated energy dissipation law for the classical Cahn-Hilliard equation. Numerical examples together with an adaptive time-stepping procedure are provided to demonstrate the effectiveness of the proposed methods.

上一条:Seminar第2304讲 相对论欧拉方程组的奇性形成

下一条:Seminar 第2297讲 离散方程的约化IV

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us