何海安

创建时间:  2008年04月08日 23:10  谭福平   浏览次数:   

3FF9A


职务/职称:副教授, 硕士生导师.

电子邮箱:haian AT shu.edu.cn

Homepage (in English): https://orcid.org/0000-0001-6673-6983


研究领域:

约化群的表示理论, 主要研究限制表示的离散分解性, 广义Verma模的可约性, 不可约酉表示的分类等问题.

教育经历:

香港科技大学 数学系 博士学位 (2014)

上海交通大学 数学与应用数学系 学士学位 (2009)

工作经历:

2022/03 - 上海大学理学院数学系 副教授

2016/12 - 2022/02 上海大学理学院数学系 讲师

2014/10 - 2016/11 北京大学北京国际数学研究中心 博士后

代表性科研项目:

1. 约化Lie群的限制表示的离散分解性 上海市自然科学基金面上项目 (2022) 主持

2. 克莱因四元对称对的分支问题 国家自然科学基金青年项目 (2019) 主持

代表性学术论文:

独立作者:

[1] Haian HE; A necessary condition for discrete branching laws for Klein four symmetric pairs; Journal of Algebra and Its Applications, Volume 22 (2023), Number 2, 2350039 (9 pages).

[2] Haian HE; Discrete decomposability of restrictions of (ց, K)-modules for (G, Gσ) with an automorphism σ of even order; Geometriae Dedicata, Volume 215 (2021), Page 415–419.

[3] Haian HE; Kobayashi’s conjecture on associated varieties for Klein four symmetric pairs (E6(-14), Spin(8, 1)); Journal of Lie Theory, Volume 30 (2020), Number 3, Page 705–714.

[4] Haian HE; A criterion for discrete branching laws for Klein four symmetric pairs and its application to E6(-14); International Journal of Mathematics, Volume 31 (2020), Number 6, 2050049 (15 pages).

[5] Haian HE; Discretely decomposable restrictions of (ց, K)-modules for Klein four symmetric pairs of exceptional Lie groups of Hermitian type; International Journal of Mathematics, Volume 31 (2020), Number 1, 2050001 (12 pages).

[6] Haian HE; Classification of Klein four symmetric pairs of holomorphic type for E7(-25); Geometriae Dedicata, Volume 202 (2019), Page 153–164.

[7] Haian HE; Classification of Klein four symmetric pairs of holomorphic type for E6(-14); Geometriae Dedicata, Volume 197 (2018), Page 77–89.

[8] Haian HE; On the reducibility of scalar generalized Verma modules of abelian type; Algebras and Representation Theory, Volume 19 (2016), Number 1, Page 147–170.

[9] Haian HE; Branching laws of parabolic Verma modules for non-symmetric polar pairs; Journal of Lie Theory, Volume 24 (2014), Number 4, Page 1047–1066.

非独立作者:

[1] Haian HE, Jing-Song HUANG, and Kayue Daniel WONG; Transfer of highest weight modules and small unipotent representations; (to appear in) Acta Mathematica Sinica, English Series.

[2] Yilian CHEN and Haian HE; On the discretely decomposable restrictions of (ց, K)-modules for Klein four symmetric pairs; International Journal of Mathematics, Volume 34 (2023), Number 1, 2250094 (16 pages).

[3] Lin-Gen DING, Chao-Ping DONG, and Haian HE; Dirac series for E6(-14); Journal of Algebra, Volume 590 (2022), Page 168-201.

[4] Haian HE, Toshihisa KUBO, and Roger ZIERAU; On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras; Kyoto Journal of Mathematics, Volume 59 (2019), Number 4, Page 787-813.

学术兼职:

International Journal of Mathematics, Journal of Algebra and its ApplicationsSCI期刊的审稿人, 美国数学会MathSciNet评论员.


最后更新日期:2023.10.23


上一条:Haian HE

下一条:Haian HE

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us