Seminar第2990讲 三角投射dg代数

创建时间:  2025年12月10日 18:00  谭福平   浏览次数:   

报告题目 (Title):On triprojective dg algebras(三角投射dg代数)

报告人 (Speaker):Bernhard Keller / 孔博恩教授(Universite Paris Cite / 巴黎西岱大学)

报告时间 (Time):2025.12.14 10:30-11:30

报告地点 (Place):校本部F309

邀请人(Inviter):高楠


报告摘要:For a Dynkin quiver Q, the triprojective (dg) algebra associated

with Q is glued together from three copies of the corresponding preprojective (dg) algebra. The category of Gorenstein projective dg modules over the triprojective dg algebra is expected to categorify Goncharov-Shen's cluster variety of triples of flags of the type of Q and this is our main motivation for considering them. Our aims in this talk is to

1) construct the triprojective (dg) algebra as the boundary dg algebra (in the sense of Yilin Wu) associated with a relative 3-Calabi-Yau completion and

2) sketch the construction of the expected symmetries of the (derived category of) its category of Gorenstein projective dg modules: an action of the cyclic group of order 6 and an action of the twist-invariant braid group of the type of Q.

This is a report on joint work with Miantao Liu and with Zhenhui Ding.

上一条:Seminar第2990讲 分次Nakajima张量簇

下一条:Seminar第2989讲 Robin边界控制下Boussinesq方程的分析

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us