核心数学研究所——几何与分析综合报告第112讲 Minkowski自同态

创建时间:  2025年11月18日 21:50  谭福平   浏览次数:   

报告题目 (Title):Minkowski Endomorphisms

中文标题:Minkowski自同态

报告人 (Speaker):Franz Schuster Vienna University of Technology

报告时间 (Time):2025年11月19日(周三) 10:00-11:00

报告地点 (Place):上海大学宝山校区FJ404

邀请人(Inviter):席东盟、李晋、吴加勇


报告摘要:Mappings that preserve topological and/or algebraic structures such as isometries or homo-, iso-, and diffeomorphisms play a fundamental role in many areas of mathematics. In convex geometric analysis, an important class of such structure-preserving maps are the so-called Minkowski endomorphisms. In this talk we present classification results for Minkowski endomorphisms as well as a family of isoperimetric inequalities for monotone Minkowski endomorphisms, each one stronger than the classical Urysohn inequality. Among this large family of inequalities, the only affine invariant one – the Blaschke-Santaló inequality – turns out to be the strongest one. A further extension of these inequalities to merely weakly monotone Minkowski endomorphisms is proven to be impossible which, in turn, uncovers an unexpected phenomenon.

上一条:Seminar第2970讲 二阶椭圆算子的主特征值

下一条:Seminar第2954讲 着色李代数的量子普遍包络代数

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us