Seminar第2783讲 纳维-斯托克斯流中形状和拓扑优化的能量稳定梯度流格式

创建时间:  2024年11月27日 13:04  谭福平   浏览次数:   

报告题目 (Title):Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows

中文题目:纳维-斯托克斯流中形状和拓扑优化的能量稳定梯度流格式

报告人 (Speaker):李嘉杰 吴文俊助理教授,上海交通大学

报告时间 (Time):2024年11月28日 (周四) 10:00

报告地点 (Place):校本部D109

邀请人(Inviter):纪丽洁


报告摘要:We study topology optimization governed by the incompressible Navier-Stokes equations using a phase field model. Unconditional energy stability is shown for the gradient flow in continuous space. The novel generalized stabilized semi-implicit schemes for the gradient flow in first-order time discretization of Allen-Cahn and Cahn-Hilliard types are proposed to solve the resulting optimal control problem. With the Lipschitz continuity for state and adjoint variables, the energy stability for time and full discretization has been proved rigorously on condition that the stabilized parameters are larger than given numbers. The proposed gradient flow scheme has the capability to work with large time steps and exhibits a constant coefficient system in full discretization which can be solved efficiently. Numerical examples in 2d and 3d show the effectiveness and robustness of the optimization algorithms proposed.

上一条:Seminar第2799讲 Morita context代数上的Gorenstein投射模

下一条:核心数学研究所——几何与分析综合报告第97讲 高阶Kazhdan 投影

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us