Seminar第2629讲 对偶四元数拉普拉斯矩阵与编队控制

创建时间:  2024年01月18日 17:10  谭福平   浏览次数:   

报告题目 (Title):Dual Quaternion Laplacian Matrix and Formation Control(对偶四元数拉普拉斯矩阵与编队控制)

报告人 (Speaker):祁力群 教授(香港理工大学、杭州电子科技大学)

报告时间 (Time):2024年1月22日(周一) 9:30-11:30

报告地点 (Place):宝山校区F309会议室

邀请人(Inviter):王卿文 教授


报告摘要:The dual quaternion Laplacian matrix of desired relative configurations in multi-agent formation control is similar to the classical unweighted Laplacian matrix via a dual quaternion diagonal unitary matrix. Its eigenvalues are all positive numbers except one zero eigenvalue. A unit dual quaternion vector is a desired formation vector if and only if it is in the null space of this dual quaternion Laplacian matrix. We study a control law based upon dual quaternion Laplacian. We extend our discussion to directed graphs. We also show that pairwise asymptotical stability can be reduced to rank-one asymptotical stability.

This is a joint work with Chunfeng Cui.

上一条:Seminar第2631讲 关于最高阶导数不可解的偏微分方

下一条:核心数学研究所——几何与分析综合报告第67讲 半空间上仿射极大方程的Liouville定理

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us