Seminar第2427讲 非线性偏微分方程时间全局的数值稳定性

创建时间:  2023年07月23日 09:31  谭福平   浏览次数:   

报告题目 (Title):Global in time numerical stability for nonlinear PDEs. (非线性偏微分方程时间全局的数值稳定性)

报告人 (Speaker): 王成 教授(University of Massachusetts Dartmouth)

报告时间 (Time):2023年7月22日(周六) 10:00 -11:00am

报告地点 (Place):上海大学宝山校区A201

邀请人(Inviter):段成华


报告摘要:Uniform in time numerical stability for certain nonlinear PDEs, such as incompressible fluid flow and a few bi-stable gradient flow models, are presented in this talk. For 2-D incompressible Navier-Stokes equation, a global bound in L^2 and H^m norms for the numerical solution is obtained. For the bi-stable gradient flows, such as the epitaxial thin film growth with slope selection, the convexity splitting nature of the numerical scheme assures its non-increasing energy. Some long time numerical simulations will also be presented.

上一条:Seminar第2431讲 广义纳什均衡问题

下一条:Seminar第2426讲 带有音速边界的半导体流体动力学模型:结构稳定性与拟中性极限

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us