Seminar第2424讲 三维非截断玻尔兹曼方程的低正则性整体解

创建时间:  2023年07月23日 09:26  谭福平   浏览次数:   

报告题目 (Title):三维非截断玻尔兹曼方程的低正则性整体解

报告人 (Speaker):段仁军 教授 (香港中文大学)

报告时间 (Time):2023年7月19日(周三) 10:00 -12:00

报告地点 (Place):线上 腾讯会议 ID: 128 110 896

邀请人(Inviter):朱佩成


报告摘要: A class of low-regularity solutions via the Wiener algebra for the non-cutoff Boltzmann equation on the torus was previously introduced in collaboration with Liu, Sakamoto and Strain. In the talk, I will further report how to extend the result to the case of the whole space. In this case, we develop an L1-L∞ interplay technique in the Fourier space to overcome the weaker macroscopic dissipation due to diffusion phenomenon in contrast to the torus case. The key is to employ time-weighted estimates motivated from viscous conservation laws. Joint work with Shota Sakamoto and Yoshihiro Ueda.

上一条:Seminar第2425讲 关于三维各向异性Navier-Stokes方程的整体解

下一条:Seminar第2424讲 求解变分不等式的最新进展

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us