Lagrangian Multiform Theory and Pluri-Lagrangian Systems

创建时间:  2023年07月17日 10:48  谭福平   浏览次数:   

Date: October 22 – October 27, 2023

Venue: Institute for Advanced Study in Mathematics (IASM), Hangzhou, China

Organizers: Frank Nijhoff (University of Leeds), Linyu Peng (Keio University), Yang Shi (Flinders University), Da-jun Zhang (Shanghai University)

Sponsors: BIRS and IASM

Workshop webpage at BIRS; IASM-BIRS Workshops in 2023


Objectives

The workshop deals with a fast-developing novel field of research that was initiated a decade ago with the pioneering paper by Lobb/Nijhoff of 2009, and that has seen quite an impressive development since with various groups making major contributions. Since there have never been specific workshops dedicated to this particular area yet, the time is now ripe for such a specific workshop to be held. Thus, the objectives of this workshop are as follows:

1. to bring together the main experts in this field in order to consolidate the results obtained so far, and to identify the outstanding problems and challenges and formulate a strategy for moving the subject forward;

2. to bring together experts from various cognate areas (such as differential geometry, theory of invariants, special function theory and from quantum physics and loop quantum gravity) whose research exhibits common ground with the subject of the workshop; to bring them up to speed with the developments and discuss potential applications.


The following areas will be covered during the workshop:

1. foundations of the theory: the basic principles and the derivation of multiform Euler-Lagrange equations;

2. emergence of (higher) variational symmetries, conservation laws and (multiform) Noether theorem;

3. symmetry reductions (e.g. to integrable maps and Painleve hierarchies) and connections to differential and difference invariant theory;

4. classification problem of Lagrangian multiforms and pluri-Lagrangian systems - multicomponent and matrix systems, higher dimensions;

5. discrete and continuous differential geometric descriptions and the variational bicomplex; 

6. the quantum formulation of the theory and Feynman path integrals;

7. connections with topological field theory and fundamental theories of physics (e.g., loop quantum gravity).



Confirmed participants

Vincent Caudrelier

University of Leeds

UK

Xiangke Chang

Chinese Academy of Sciences

China

Yong Chen

East China Normal University

China

Jipeng Cheng


China University of Mining and Technology

China

Masashi Hamanaka

Nagoya University

Japan

Yuji Kodama

Shandong University of Science and Technology, 

& Ohio State University

China/USA

Thanadon Kongkoom

Naresuan University

Thailand

Chuanzhong Li

Shangdong University of Science and Technology

China

Shangshuai Li

Shanghai University

China

Shihao Li

Sichuan University

China

Xing Li

Jiangsu Normal University

China

Jin Liu

Shanghai University

China

Xingyu Liu

Shanghai University

China

Yaqing Liu

Beijing Information Science 

and Technology University

China

Frank Nijhoff

University of Leeds

UK

Yusuke Ono

Keio University

Japan

Linyu Peng

Keio University

Japan

Changzheng Qu

Ningbo University

China

Nicolai Reshethikin

Tsinghua University

China

Jacob Richardson

University of Leeds

UK

Leilei Shi

Shanghai University

China

Yang Shi

Flinders University

Australia

Ying Shi

Zhejiang University of 

Science and Technology

China

Pengyu Sun

Shanghai University

China

Yingying Sun

University of Shanghai for 

Science and Technology

China

Kongkoom Thanadon

Naresuan University

Thailand

Kelei Tian

Hefei University of Technology

China

Shigeru Tomita

Keio University

Japan

Mats Vermeeren

Loughborough University

UK

Chengfa Wu

Shenzhen University

China

Yuancheng Xie

Peking University

China

Xiaoxue Xu

Zhengzhou University

China

Lingling Xue

Ningbo University

China

Bo Yang

Ningbo University

China

Di Yang

University of Science and 

Technology in China

China

Sikarin Yoo-Kong

Naresuan University

Thailand

Cheng Zhang

Shanghai University

China

Da-jun Zhang

Shanghai University

China

Danda Zhang

Ningbo University

China

Zejun Zhou

University of Science and 

Technology of China

China

Dafeng Zuo

University of Science and 

Technology of China

China







Online   participants (confirmed)

Huai-Liang Chang

Hong Kong University of 

Science and Technology

Hong Kong

Bianca Dittrich

Perimeter Institute Canada

Canada

Adam Doliwa

University of Warmia 

and Mazury

Poland

Anton Dzhamay

The University of 

Northern Colorado

USA

Joao Faria Martins

University of Leeds

UK

Evgeny Ferapontov

Loughborough University

UK

Wei Fu

East China Normal University

China

Felix Gunther

Technische Universität Berlin

Germany

Jarmo Hietarinta

University of Turku

Finland

Andrew Kels

University of New South Wales

Australia

Irina Kogan

North Carolina State University

USA

Atsuo Kuniba

University of Tokyo

Japan

Nobutaka Nakazono

Tokyo University of Agriculture and   Technology

Japan

Qingping Liu

China University of Mining and Technology   (Beijing)

China

Peter Olver

University of Minnesota -- 

Twin Cities

USA

Reinout Quispel

La Trobe University

Australia

Wolfgang Schief

University of New South Wales

Australia

Anup Anand Singh

University of Leeds

UK

Yuri Suris

Technical University of Berlin

Germany

Benoit Vicedo

University of York

UK

Pavlos Xenitidis

Liverpool Hope University

UK

Jing Ping Wang

University of Kent

UK

Songlin Zhao

Zhejiang University of 

Technology

China



Programme

https://workshops.birs.ca/events/23w5043/schedule


Related papers


First papers:

[1]  S. Lobb, F.W. Nijhoff, Lagrangian multiforms and multidimensional consistency, J. Phys. A: Math Theor., 42 (2009) 454013

[2]  S. Lobb, F.W. Nijhoff, R. Quispel, Lagrangian multiform structure for the lattice KP system, J. Phys. A: Math Theor., 42 (2009) 472002

[3]  S. Lobb, F.W. Nijhoff, Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A: Math. Theor., 43 (2010) 072003

[4]  A. Bobenko, Yu.B. Suris, On the Lagrangian structure of integrable quad-equations, Lett. Math. Phys., 92 (2010) 17-31

[5]  P. Xenitidis, F.W. Nijhoff, S. Lobb, On the Lagrangian formulation of multidimensionally consistent systems, Proc. Roy. Soc., A467 (2011) 3295-3317

[6]  S. Yoo-Kong, S. Lobb, F.W. Nijhoff, Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A: Math. Theor., 44 (2011) 365203

[7]  J. Atkinson, S.B. Lobb, F.W. Nijhoff, An integrable multicomponent quad equation and its Lagrangian formalism, Theor. Math. Phys., 173 (2012) 1644-1653

[8]  S. Yoo-Kong, F.W. Nijhoff, Discrete-time Ruijsenaars-Schneider system and Lagrangian 1-form structure, arXiv:1112.4576 (Dec. 2011)

[9]  Yu.B. Suris, Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms, J. Geom. Mech., 2013, 5(3): 365-379, arXiv: 1212.3314 (Dec. 2012)

[10] R. Boll, M. Petrera, Yu. B. Suris, Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Toda-type systems, arXiv:1302.7144 (Feb. 2013)

[11] R. Boll, M. Petrera, Yu.B. Suris, Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems, J. Phys A: Math. Theor., 48 (2015) 085203

[12] R. Boll, M. Petrera Yu.B. Suris, What is integrability of discrete variational systems? Proc, Roy Soc. A470 (2014) 20130550

[13] S. Lobb, F.W. Nijhoff, A variational principle for discrete integrable systems, SIGMA, 14 (2018) 041, arXiv: 1312.1440


EL equations and continuum limits:

[14] Yu.B. Suris, Variational fomrtulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms, J. Geom. Mech, 5 (2013) 365--379

[15] M. Vermeeren, Continuum limits of pluri-Lagrangian, J. Int. Syst. 4 (2019) 1-34

[16] M. Vermeeren, A variational perspective on continuum limits of ABS and lattice GD eqations, SIGMA, 15 (2019) 044


The pluri-Lagrangian formulation:

[17] A. Bobenko, Yu.B. Suris, Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems, Comm. Mah. Phys., 336 (2015) 199-215

[18] Yu.B. Suris, Variational symmetries and pluri-Lagrangian systems, in: Dynamical systems, Number Theory and Appls. (Springer Verlag), 2016) 255-266

[19] Yu.B. Suris, M. Vermeeren, On the Lagrangian structure of integrable hierarchies, in: Advances in Discrete Differential Geometry (Springer Verlag, 2016) 347-378


Some recent developments:

Lagrangian multiform formulation of the Lax pair:

[20] D. Sleigh, F.W. Nijhoff, V. Caudrelier, A variational approach to Lax representations, J. Geom. Phys., 142 (2019) 66--79


Role of variational symmetries in multiform context:

[21] Yu.B. Suris, Variational symmetries and pluri-Lagrangian systems, in "Dynamical Systems, Number Theory and Applications, (Springer Verlag, 2016) 255-266

[22] D. Sleigh, F.W. Nijhoff, V. Caudrelier, Variational symmetries and Lagrangian multiforms, Lett. Math. Phys., 110 (2020) 805--826

[23] M. Petrera, M. Vermeeren, Variational symmetries and pluri-Lagrangian strucures for integrable hierarchies of PDEs, Eur. J. Math., 7 (2021) 741-765


Lagrangian 3-form structure for the KP hierarchy:

[24] D. Sleigh, F.W. Nijhoff, V. Caudrelier, Lagrangian multiforms for the Kadomtsev-Petviashvili (KP) and the Gel'fand-Dickey hierarchy, Int. Math. Res. Not., 2021 (2021) 1-41

[25] S. Lobb, F.W. Nijhoff, R. Quispel, Lagrangian multiform structure for the lattice KP system, J. Phys. A: Math. Theor., 42 (2009) 472002

[26] S. Lobb, F.W. Nijhoff, Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A: Math. Theor., 43 (2010) 072003

[27] F.W. Nijhoff, Lagrangan 3-form structure for the Darboux systems and the KP hierarchy, Lett. Math. Phys., (2023) arxiv: 2206.14338


Connection with classical r-matrices:

[28] V. Caudrelier, M. Stoppato, B. Vicedo, Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies, arXiv:2201.08286

[29] V. Caudrelier, M. Stoppato, Multiform description of the AKNS hierarchy and classical r-matrix, J. Phys. A: Math. Theor., 54 (2022) 235204, arXiv:2010.07163

[30] V. Caudrelier, M, Stoppato, Hamiltonian multiform of an integrable hierarchy, J. Math. Phys., 61 (2020) 123506, arxiv:2004.01164


Lagrangian structure of non-commuting flows:

[31] V. Caudrelier, F. Nijhoff, D. Sleigh, M. Vermeeren, Lagrangian multiforms on Lie groups and non-commuting flows, J. Geom. Phys., 187 (2023) 104807, arxiv:2204.09663


Towards quantum multiform theory:

[32] S.D. King, F.W. Nijhoff, Quantum variational principle and quantum multiform theory, Nucl. Phys. B947 (2019) 114686, arxiv:1702.08709 [math-ph]

[33] T. Kongkoom, S. Yoo-Kong, Quantum integrability: Lagrangian 1-form case, Nucl. Phys. B987 (2023) 116101, arxiv:2203.16914 [math-ph]

[34] C. Puttarprom, W. Piensuk, S. Yoo-Kong, Integrable Hamiltonian hierarchies and Lagangian 1-forms, arxiv:1904.00582

[35] A. Sridhar, Yu.B. Suris, Commutativity in Lagrangian and Hamiltonian Mechanics, J. Geom. Phys., 137 (2019) 154-161, arxiv: 1801.06076 [math-ph]


Connection with Loop Quantum Gravity:

[36] B. Bahr, B. Dittrich, Breaking and restoring of diffeomorphism symmetry in discrete gravity, arxiv:0909.5688 [gr-qc]

[37] B. Bahr, B. Dittrich, Improved and perfect actions in discrete gravity, Phys. Rev. D, 80 (2009) 124030, arxiv: 0907.4323 [gr-qc]

[38] C. Rovelli, On the structure of a background independent quantum theory: Hamilton function, transition amplitudes, classical limit and continuous limit, arxiv:1108.0832 [gr-qc]

[39] S. Ariwahjoedi, J.S. Kosasih, C. Rovelli, F.P. Zen, Degrees of freedom in discrete geometry,  arxiv: 1607.07963 [gr-qc]

[40] C. Rovelli, Discretizing parametrized systems: the magic of Ditt–invariance, Phys. Rev. D 106 (2022) 104062, arxiv:1107.2310 [hep-lat]


Connections with Chern-Simons theory and topological field theory:

[41] L. Martina, Kur. Myrzakulov, R. Myrzakulov, G. Soliani, Deformation of surfaces, integrable systems and Chern-Simons theory, J. Math. Phys., 42 (2001) 1397-1417, arXiv:nlin/0006039

[42] K.J. Costello, Integrable lattice models from four-dimensional field theories, Proc. Symp. Pure Math., 88 (2014) 3-23. arxiv:1308.0370

[43] K. Costello, E. Witten, M. Yamazaki, Gauge theory and integrability, I, ICCM Not. 6 (2018) 46–119, arxiv:1709.09993 [hep-th]

[44] K. Costello, E. Witten, M. Yamazaki, Gauge theory and integrability, II, ICCM Not. 6 (2018) 120–149, arxiv:1802.01579 [hep-th]

[45] K. Costello, M. Yamazaki, Gauge theory and integrability, III, arXiv:1908.02289 [hep-th]

[46] F. Delduc, S. Lacroix, M. Magro, B. Vicedo, A unifying 2d action for integrable σ-models from 4d Chern-Simons theory, Lett. Math. Phys., 110 (2020) 1645–1687

[47] F. Nijhoff, Integrable hierarchies, Lagrangian structures and noncommuting flows, published in Eds. M.J. Ablowitz, B. Fuchssteiner and M. Kruskal, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, pp. 150–181, Signapore, World Scientific Publ. Co., 1987.

[48] V. Caudrelier, M. Stoppato, B. Vicedo, On the Zakharov-Mkhailov action: 4d Chern-Simons origin and covariant Poisson algebra of the Lax connection, arXiv:2012.04431 [hep-th]


Connection with quantum geometry:

[49] V.V. Bazhanov, A.P. Kels, S.M. Sergeev, Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs, J. Phys. A: Math. Theor., 49 (2016) 464001,  arXiv:1602.07076 [math-ph]

[50] A.P. Kels, M. Yamazaki, Lens elliptic gamma function solution of the Yang-Baxter equation at roots of unity, J. Stat. Mech., (2018) 023108, arXiv:1709.07148 [math-ph]

[51] A. Bobenko, F. Gunther, On discrete integrable equations with convex variational principles, Lett. Math. Phys., 102 (2012) 181-202, arXiv:1111.6273 [nlin.SI]  

[52] V.V. Bazhanov, S.M. Sergeev, A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations, Adv. Theor. Math, Phys., 16 (2012) 65-95, arxiv: 1006.0651 [math-ph]

[53] V.V. Bazhanov, V.V. Mangazeev, S.M. Sergeev, Quantum geometry of 3-dimensional lattices and tetrahedron equation, J. Stat. Mech., (2008) P07004, arxiv: 0911.3693 [math-ph]


References on variational bicomplex:

For Differential Equations:

[54] I.M. Anderson, Introduction to the variational bicomplex, in Mathematical Aspects of Classical Field Theory, Contemp. Math. 132 (1992) 5173

[55] I. M. Anderson, The Variational Bicomplex, (book manuscript), Utah State University, 1989.

[56] L.A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd edition, World Scientific, 2003

[57] I. Kogan, P.J. Olver, Invariant Euler-Lagrange equations and the invariant variational Bicomplex, Acta Appl. Math.,76 (2003) 137-193

[58] I.S. Krasil'shchik, A.M. Vinogradov (eds), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Providence, RI: AMS Publications, Monograph, 1999.

[59] P.J. Olver, Applications of Lie Groups to Differential Equations, (2nd edn), New York: Springer-Verlag, 1993.

[60] T. Tsujishita, On variation bicomplexes associated to differential equations, Osaka J. Math. 19 (1982) 311363.

[61] W.M. Tulczyjew, The Lagrange complex, Bulletin la S. M. F. 105 (1977) 419-431.

[62] W.M. Tulczyjew, The Euler-Lagrange resolution, in Lecture Notes in Mathematics 836, Differential Geometrical Methods in Mathematical Physics (Eds. A. Dold, B. Eckmann), pp 22–48 (Springer-Verlag, New York 1980).

[63] A.M. Vinogradov, A spectral sequence associated with a non-linear differential equation, and the algebro-geometric foundations of Lagrangian field theory with constraints, Sov. Math. Dokl. 19 (1978) 144148.

[64] A.M. Vinogradov, The b-spectral sequence, Lagrangian formalism, and conservation laws. I: The linear theory, J. Math. Anal. Appl., 100 (1984) 1-40.

[65] A.M. Vinogradov, The b-spectral sequence, Lagrangian formalism, and conservation laws. II: The nonlinear theory, J. Math. Anal. Appl., 100 (1984) 41-129.

[66] R. Vitolo, Finite order variational bicomplexes, Mathematical Proceedings of the Cambridge Philosophical Society 125 (1999) 321-333, arXiv:math-ph/0001009


For discrete equations:

[67] P.E. Hydon, E.L. Mansfield, A variational complex for difference equations, Found. Comput. Math., 4 (2004) 187-217.

[68] B.A. Kupershmidt, Discrete Lax Equations and Differential-Difference Calculus, Paris: Asterisque 123, SMF, 1985.

[69] E.L. Mansfield, P.E. Hydon, Diffeence forms, Found. Comput. Math., 8 (2008) 427-467.

[70] L. Peng, From Differential to Difference: The Variational Bicomplex and Invariant Noether's Theorems, Ph.D. Thesis, University of Surrey, 2013.

[71] L. Peng, P.E. Hydon, The difference variational bicomplex and multisymplectic systems, arXiv:2307.13935 [math-ph].


上一条:Seminar第2424讲 求解变分不等式的最新进展

下一条:Seminar第2423讲 Eigenvalue and Singular Value Inequalities via Min-max Principles

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us