第2421讲 McKean-Vlasov随机微分方程的中心极限定理和中偏差原理

创建时间:  2023年07月10日 14:29  谭福平   浏览次数:   

报告题目 (Title):Central limit theorem and Moderate deviation principle for McKean-Vlasov SDEs

(McKean-Vlasov 随机微分方程的中心极限定理和中偏差原理)

报告人 (Speaker):Chenggui Yuan 教授(英国斯旺西大学Swansea University)

报告时间 (Time):2023年7月12日 (周三) 15:30

报告地点 (Place):校本部B308

邀请人(Inviter):阳芬芬


报告摘要:In this talk, under a Lipschitz condition on distribution dependent coefficients, we discuss the central limit theorem and the moderate deviation principle for solutions of McKean-Vlasov type stochastic differential equations, which generalize the corresponding results for classical stochastic differential equations to the distribution dependent setting.

上一条:Seminar第2422讲 Comparison of the upper bounds for the extreme points of the polytopes of line-stochastic tensors

下一条:Seminar第2420讲 阿贝尔范畴上的挠对的稳定方法

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us