Seminar第2363讲 禁用一些奇圈图的最小度稳定性

创建时间:  2023年04月18日 19:39  谭福平   浏览次数:   

报告题目 (Title):禁用一些奇圈图的最小度稳定性(Minimum degree stability of graphs forbidding some odd cycles)

报告人 (Speaker):彭岳建 教授(湖南大学)

报告时间 (Time):2023年4月19日(周三) 19:30

报告地点 (Place):腾讯会议 739-770-096

邀请人(Inviter):康丽英


报告摘要: We consider the minimum degree stability of graphs forbidding odd cycles: What is the tight bound on the minimum degree to guarantee that the structure of a $C_{2k+1}$-free graph inherits from the extremal graph (a balanced complete bipartite graph)? Andr\'{a}sfai, Erd\H{o}s and S\'{o}s showed that if a $\{C_3,C_5,\cdots, C_{2k+1}\}$-free graph on $n$ vertices has minimum degree greater than $\frac{2}{2k+3}n$, then it is bipartite. H\"{a}ggkvist showed that for $k\in \{1,2,3,4\}$, if a $C_{2k+1}$-free graph on $n$ vertices has minimum degree greater than $\frac{2}{2k+3}n$, then it is bipartite. H\"{a}ggkvist also pointed out that this result cannot be extended to $k\geq 5$. In this paper, we give a complete answer for any $k\geq 5$.

上一条:Seminar第2365讲 求解非凸稀疏优化问题全局最优解的迭代阈值算法的收敛性

下一条:Seminar第2362讲 次线性扩展及其应用

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us