Seminar第2317讲 带有分数阶拉普拉斯的偏微分方程的径向基函数法

创建时间:  2022年10月31日 17:50  谭福平   浏览次数:   

报告题目 (Title):Radial basis function methods for PDEs with integral fractional Laplacian(带有分数阶拉普拉斯的偏微分方程的径向基函数法)

报告人 (Speaker):张中强 副教授(美国伍斯特理工学院)

报告时间 (Time):2022年11月4日(周五) 10:00-11:30

报告地点 (Place):腾讯会议 426-278-452

邀请人(Inviter):李常品、蔡敏


报告摘要:We consider radial basis function methods for fractional PDEs on general bounded domains. Efficient computation of such problems with high accuracy on bounded domains is challenging, due to the intrinsic singularity and nonlocal nature of the fractional Laplacian. We develop a numerical method that can accurately compute the fractional Laplacian of any radial basis function. We also present a flexible formulation for collocation. We present several examples to compare our method with some existing methods and illustrate the efficiency in two dimensions.

上一条:Seminar第2318讲 离散可积系统与潘勒韦方程

下一条:Seminar第2315讲 有限群的因子分解

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us