Seminar第2275讲 张量场上的正倒向随机微分方程及其在黎曼流形上的Navier-Stokes方程上的应用

创建时间:  2022年08月29日 18:38  谭福平   浏览次数:   

报告题目 (Title):Forward-backward stochastic differential equation on tensorfields and the application on Navier-Stokes equations on Riemannian manifold

(张量场上的正倒向随机微分方程及其在黎曼流形上的Navier-Stokes方程上的应用)

报告人 (Speaker):陈昕 长聘副教授(上海交通大学)

报告时间 (Time):2022年8月31日 (周三) 15:00

报告地点 (Place):腾讯会议(会议号:742-421-094 无密码)

邀请人(Inviter):阳芬芬


报告摘要:We introduce a class of forward-backward equation on tensor fields which has a connection with quasi-linear partial differential equation on tensor fields. As an application, we will provide a stochastic representation for Navier-Stokes equation on a Riemannian manifold. Based on this representation, we will give a stochastical proof about local existence of a solution for Navier-Stokes equation on a Riemannian manifold. This talks is based on a joint work with A.B. Cruzeiro, Wenjie Ye and Qi Zhang.

上一条:Seminar第2276讲 离散方程的约化

下一条:Seminar第2274讲 带边黎曼流形轨道空间上的泛函不等式

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us