Seminar第2208讲 Geometry of Painlevé equations: (1,2)

创建时间:  2021年11月23日 08:09  谭福平   浏览次数:   

报告题目 (Title):Geometry of Painlevé equations: (1,2)

(Painlevé方程的几何:1,2)

报告人 (Speaker):Anton DZhamay 教授(北科罗拉多大学)

报告时间 (Time):2021年11月23日(周二) 11:00-13:00

报告地点 (Place):腾讯会议ID:320 724 494

邀请人(Inviter):张大军


报告摘要:In this mini-course we would present some beautiful geometric ideas underlying the theory of Painlevé equations, both differential and discrete. We explain the idea behind the construction, due to K. Okamoto, of the space of initial conditions of a differential Painlevé equation, and how understandign the geometry of this space can help us understand its symmetries (Bäcklund transformations). We also explain the appearance of discrete Painlevé equations as particular combinations of such symmetries that admit a structure of a discrete dynamical systems. We then generalize these ides to explain the full classification scheme of Painlevé equations, due to H. Sakai.

上一条:Seminar第2209讲 Geometry of Painlevé equations: (3,4)

下一条:Seminar第2207讲 粘性依赖密度的1维可压缩Navier-Stokes方程稀疏波的整体稳定性

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us