Seminar第2173讲 High dimensional PCA(高维主成分分析)

创建时间:  2021年11月03日 09:28  谭福平   浏览次数:   

报告题目 (Title):High dimensional PCA(高维主成分分析)

报告人 (Speaker):潘光明 教授(随机矩阵领域知名专家,南洋理工大学)

报告时间 (Time):2021年11月5日(周五) 9:00

报告地点 (Place):腾讯会议(会议号:958 938 143)

邀请人(Inviter):张阳春


报告摘要:We propose an approach based on sample eigenvalues of sample covariance matrices to estimate the number of significant components in high dimensional data. We show the consistency of the estimator in different type of data. Simulations are run to compare the performance with those existed approaches.

上一条:Seminar第2174讲 椭球分布样本协方差矩阵的离群特征值和最大非离群值的渐进分布

下一条:Seminar第2170讲 Long time asymptotics for the focusing Fokas-Lenells equation in the solitonic region of space-time

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us