Seminar No.1668 Convex polytopes and minimum ranks of nonnegative sign pattern matrices

创建时间:  2018年06月11日 00:00  谭福平   浏览次数:   

Title: Convex polytopes and minimum ranks of nonnegative sign pattern matrices
Reporter: Prof. Zhongshan Li (Georgia State University)
Time: 2018-6-11 (Monday) 14:30
Place: G508

Abstract: A sign pattern matrix (resp., nonnegative sign pattern matrix) is a matrix whose entries are from the set $\{+, -, 0\}$ (resp., $ \{ +, 0 \}$). The minimum rank (resp., rational minimum rank) of a sign pattern matrix $\cal A$ is the minimum of the ranks of the matrices (resp., rational matrices) whose entries have signs equal to the corresponding entries of $\cal A$. Using a correspondence between sign patterns with minimum rank $r\geq 2$ and point-hyperplane configurations in $\mathbb R^{r-1}$ and Steinitz's theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every $d$-polytope determines a nonnegative sign pattern with minimum rank $d+1$ that has a $(d+1)\times (d+1)$ triangular submatrix with all diagonal entries positive. It is also shown that there are at most $\min \{ 3m, 3n \}$ zero entries in any condensed nonnegative $m \times n$ sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.

上一条:Seminar No.1665 Quadratic convergence to the optimal solution of second order conic optimization

下一条:Seminar No.1664 A new method for solving the homogeneous feasibility problem

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us