蔡敏

创建时间:  2013年12月28日 11:45  谭福平   浏览次数:   

5A8A

职务/职称:讲师

电子邮箱:mcai AT shu.edu.cn

电话:021-66132184

研究领域:

偏微分方程数值方法,主要研究分数阶偏微分方程的数值方法等

教育经历:

2015.9-2021.6, 上海大学, 计算数学, 博士

2019.10-2021.3, 布朗大学,联合培养博士研究生

2011.9-2015.6, 上海大学, 数学与应用数学, 学士

工作经历:

2021.9-至今, 上海大学,数学系, 讲师

代表性科研项目:

1. 时间Caputo空间Riesz分数阶偏微分方程解的正则性及其高效数值方法, 国家自然科学基金青年科学基金项目(12201391), 2023.1.1-2025.12.31, 30万, 主持

2. 非线性阿达马型分数阶偏微分方程有限时间爆破问题的数值方法研究, 国家自然科学基金面上项目(12271339), 2023.1.1-2026.12.31, 参与

3. 时空分数阶超慢扩散模型的数值计算,教育部2022年度“春晖计划”合作科研项目, 2023.5.22-2025.5.21主持

代表性学术论著(自2013年):

  1. Li, Changpin*; Cai, Min, High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations: Revisited, Numerical Functional Analysis and Optimization, 38(7), 861-890, 2017.

  2. Cai, Min; Li Changpin*, On Riesz derivative, Fractional Calculus and Applied Analysis, 22(2), 287-301, 2019.

  3. Cai, Min; Li Changpin*, Regularity of the solution to Riesz-type fractional differential equation, Integral Transforms and Special Functions, 30(9), 711-742, 2019.

  4. Kharazmi, Ehsan; Cai, Min; Zheng, Xiaoning; Zhang Zhen; Lin, Guang; Karniadakis, Em George*, Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks, Nature Computational Science, 1, 744–753, 2021.

  5. Cai, Min; Kharazmi Ehsan; Li, Changpin; Karniadakis, Em Geroge*, Fractional Buffer Layers: Absorbing Boundary Conditions for Wave Propagation, Communications in Computational Physics, 31(2), 331-369, 2022.

  6. Cai, Min; Karniadakis, Em George; Li, Changpin*, Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant, Chaos, 32, 071101, 2022.

  7. Wang, Yu; Cai, Min*, Finite difference schemes for time‑space fractional diffusion equations in one‑ and two‑dimensions, Communications on Applied Mathematics and Computation, https://doi.org/10.1007/s42967-022-00244-8, 2023.

  8. Cai, Min; Li, Changpin*, L1/LDG algorithm for time-Caputo space-Riesz fractional convection equation in two dimensions, Mathematical Methods in the Applied Sciences, http://doi.org/10.1002/mma.9641, 2023

学术专著和教材:

  1. Li, Changpin; Cai, Min, Theory and Numerical Approximations of Fractional Integrals and Derivatives. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020. xiii+312 pp. ISBN: 978-1-611975-87-1.

学术兼职:

美国数学评论(Mathematical reviews)评论员


最后更新日期:2023.10.23


上一条:Lecturers

下一条:Danqing Cao

CopyRight © Shanghai University    沪ICP备09014157   Address : 99 Shangda Road, BaoShan District, Shanghai.(traffic)   Zip Code : 200444   Tel.
Technical Support : Information Technology Office of Shanghai University   Contact Us